
Estonian-Finnish Olympiad 2013
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1. PRISM (8 points)

i) (4 points) The prism is acted on by three
forces: reaction force ~Rl from the left-hand
table, directed perpendicularly to the prism’s
face; reaction force ~Rr from the right-hand
table, directed horizontally (with its point
of action to be determined yet); and gravit-
ational force mg, directed vertically and ap-
plied at the triangle’s centre. (Considering a
planar triangular cross-section of the prism
is enough.)

On the verge of falling out, the force ~Rr
is applied at the lower corner of the triangle.
If a body in equilibrium is acted on by three
forces, then their lines of action must inter-
sect at one point. This is because otherwise
the torque of one of those forces would not be
zero with respect to the intersection of the
lines of action of the two other forces.

As the distance between the triangle’s
centre and its side is

p
3

6 a, the distance
between the points of action of ~Rl and ~Rr isp

3
6 acos30◦ = 1

4 a. Thus, d = 1
4 acos30◦ =

p
3

8 a.
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ii) (4 points) Let the corners be denoted
by A and B, and the tip of the prism (at
its equilibrium position) by C. Let us con-
sider a small rotation of the prism (assum-
ing it remains in contact with the corners).
The trajectory of the tip is a circle ascribed
around the triangle ABC (it follows from the
property of the inscribed angles because the
6 ACB remains equal to 60◦). The radius of
that circle r = l/

p
3; its centre will be denoted

by O. Once the prism rotates by angle α, so
that the new position of the tip will be D, the
central angle 6 COD = 2α. Hence, the tip is
raised by r− r cos(2α) ≈ 2rα2. The height of
the centre of mass P of the prism is raised
because the tip is raised, and lowered be-
cause the vertical projection of the segment
CP is reduced by |CP|(1− cosα) ≈ |CP|α2/2.
Here, |CP| = a/

p
3. So, the original position

is stable if ap
3
α2/2< 2 lp

3
α2, hence l > 1

4 a.
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2. CELLPHONE CAMERA (6 points) The
distance L is often called hyperfocal distance
in photography and it was calculated more
than one hundred years ago by Louis Derr
(the figure is taken from his book Photo-
graphy for students of physics and chemistry,
published in 1906).

Let’s consider that the camera is focused
to distance L and the image is formed exactly
on the sensor’s plane. The object’s distance L
and its image’s distance a (corresponds to p′

on the figure) are related by the lens formula
1
L + 1

a = 1
f , thus

a = Lf
L− f

= Lf
L(1− f /L)

≈ Lf
L

(
1+ f

L

)
= f + f 2

L
,

where the approximation (1+ x)−1 ≈ 1− x (for
small x) was used. Image’s distance exceeds
the focal length by ∆a = a− f = f 2/L.

i) (4 points) The light coming from an in-
finitely far away object will pass the focal
point F and form a cone which is cut by the
sensor’s plane. The diameter d of the cut on
the sensor’s plane can be found from similar
triangles d/D =∆a/ f , thus d = D f /L. Taking
into account the sharpness condition d ≤ η,
where η= w/N is the size of a single element
of the sensor, we find that the limiting value
of L is L = D f /η= D f N/w ≈ 5.5 m.

ii) (2 points) We’ll now find the shortest dis-
tance s satisfying the sharpness condition.
Object at distance s will have an image at
distance b = f + f 2/s and the light passing the
lens will converge behind the sensor’s plane
forming a cone. The diameter d2 of the cone’s
cut with the sensor’s plane can be calculated
from similar triangles: d2/D = (b−a)/b. Ac-
counting for sharpness condition d2 = η, we
can express b = a/(1−η/D), and substituting

the values of a and b gives

f + f 2

s
=

f + f 2

L
1−η/D

= f
1+η/D
1−η/D

≈ f
(
1+ η

D

)2

≈ f
(
1+ 2η

D

)
.

Finally, f 2/s = 2 f η/D, or s = 1
2 D f /η = L/2 ≈

2.75 m.

3. MISSION TO MARS (7 points)

i) (1 point) We can find the orbital period
of Mars from Kepler’s third law Ra

3/Rg
3 =

Ta
2/Tg

2, giving tt ≈ 1.87yr.

ii) (1.5 points) Again, we can use Kepler’s
third law to calculate half of the orbital
period.

tt =
Tg

2
(Ra +Rg)3/2

(2Rg)3/2 ≈ 0.707yr.

iii) (1.5 points) Background. ∆v is import-
ant, because the sum of all ∆v determines
how much fuel is needed for a given mission.
The fuel needed is exponential of total ∆v and
is described by Tsiolkovsky rocket equation.

Kinetic energy per unit mass of such a
transfer orbit where it intersects the Earth’s
orbit is − GMs

Rg+Ra
+ GMs

Rg
. Using the orbital

angular speed of Earth we can substitute

GMs =
4π2R3

g
Tg

. The speed at the beginning of
the transfer orbit becomes

vt0 =
√

2GMs

(
1

Rg
− 1

Rg +Ra

)
≈ 32.7km/s

. The speed in Earth’s inertial frame is
v′t0

= vt0 −vg ≈ 2.94km/h. To achive that, we
first need to escape Earth’s gravity, so

∆v1 =

√√√√2

(
v′t0

2

2
+ GMg

rg

)
.
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Using the surface gravity of Earth we can
substitute GMg

rg
= ggrg so ∆v1 ≈ 11.2km/s.

iv) (1.5 points) We can calculate the speed
of the transfer orbit where it intersects the
orbit of Mars from Kepler’s second law vt1 =
vt0 /1.52≈ 21.5km/s. The speed of the space-
craft relative to Mars is v′t1

≈ 3.25km/s. The
speed of the spacecraft once near Mars sur-
face is

vtm =

√√√√2

(
v′t1

2

2
+ ra ga

)
≈ 5.98km/s

Since the speed of low Mars orbit is vea =p
ra ga ≈ 3.55km/s, we need to brake for

∆v2 ≈ 2.43km/s.

v) (1.5 points) The Earth–Sun–Mars angle
α at the launch of the mission needs to
be α = π−watt ≈ 0.77 for the spacecraft to
reach Mars. Likewise for the return trip
β = π−wg tt ≈ −1.301. If we go to the coro-
tating frame of referense with earth, we can
see that the minimal time between those two
angles is 2π−α+β

wa−wg
≈ 1.96yr. The minimal dura-

tion of the trip is therefore longer by tt, giving
2.67yr.

4. MAGNETIC DIPOLES (7 points)

i) (3 points) There is no torque on the square
if θ = 0 or θ = π, so one of them is stable
and the other unstable. If we start from
θ = 0 and turn the square to some θ, but
keep two sides of the square perpendicular
to ~B, Lorentz forces on these two sides give a
torque τ=−BIa ·asinθ =−Bmsinθ towards
decreasing θ. By symmetry, we get the same
result if we keep the other keep two sides
of the square perpendicular to ~B. It is pos-
sible to conclude that the torque depends
only on θ (at least near θ = 0), not on the
exact orientation of the square. Since torque
acts to restore θ = 0, we find that θs = 0 and
θu = π. To find the work to get from θs to

θu, we can again keep two sides perpendicu-
lar to ~B - the answer cannot depend on the
path, so we choose the simplest one. Integ-
rating τ = Bmsinθ from θ = 0 to π gives us
w = 2Bm.

ii) (4 points) Let us denote the number
of electrons (per unit volume) with mag-
netic moment projection +µB as n+ and the
ones with −µB as n−. Their sum is always
the same, n+ + n− = n. Also, in thermal
equilibrium, their ratio is given by n−

n+ =
exp

(
− 2µBB

kBT

)
, where kB is Boltzmann’s con-

stant. Solving the equations, we can find
n+ and n−. The total magnetic moment per
unit volume (in the direction of ~B) is given by
M =µB(n+−n−). After substituting,

M =µBN
1−exp

(
2µBB
kBT

)
1+exp

(
2µBB
kBT

) =µBntanh
(
µBB
kBT

)
.

Additional comments. We see B and M
always have the same sign, therefore ~M is
parallel with ~B. This makes sense, as we
saw that θ = 0 (~m parallel to ~B) orientation
had lowest energy. The graph of M vs B goes
to µBn for very large B or to −µBn for very
small B (all spins aligned with ~B). At B = 0,
M = 0 as well, since both spin orientations
have the same energy. Around zero, the curve
is linear, as tanh x ≈ x for small x gives us

M ≈ µ2
BnB

kBT .

5. FRICTION OF A STRING (8 points)
Let’s first calculate the difference of tension
force T between two ends of a sliding string
arced over a cylinder by an angle α. Further-
more, let’s look at a short piece of the arc
that subtends an angle dα. On one hand,
dT = µdR is the friction force acting on the
piece, where dR is the reaction force. On the
other hand, dR ≈ T dα, because both ends
of the piece are pulled by a force with a ra-

dial component of T dα
2 (where α is measured

in radians). Therefore, we get a differen-
tial equation: dT = µT dα or d lnT = µdα,
whence T = T0eµα.

As a solution to the problem, we can meas-
ure the change of the tension force for differ-
ent angles α (for example, π

2 , π, 3π
2 , 2π, 5π

2
etc. for several turns; however, keeping the
strings vertical offers better precision) and
plot lnT with respect to α. The slope of the
graph is the µ to be measured.

Extra solution (not as exact). Those who
cannot derive the necessary formula can still
do the experiment by doing the same meas-
urements and noting from the plot that the
relationship between α and T looks expo-
nential. Thus, we can make an ansatz that
T = T0Xµα: as α = 0 must correspond to
T = T0, we cannot reasonably write the µ

anywhere else without over-complicating the
formula. Now, we can re-measure the given
pencil (it may be reasonably enough approx-
imated with a cylinder here; more exact ap-
proaches exist) and conclude that X ≈ 2.7.
From there on, the calculation is the same.

6. SPHERE AND CYLINDER (7 points)

i) (2 points) Since no energy is lost due to
friction on sliding, the change in potential
energy ∆Ep = mgH is transformed to kinetic
energy consisting of both translational and
rotational motion. Taking into account the
rolling condition v =ωr, we have

∆Ep = Ek = 1
2

mv2 + 1
2

Iω2

= 1
2

mv2 + 1
2

kmv2 = 1
2

(1+k)mv2,

where general expression I = kmr2 for mo-
ment of inertia is used. Therefore, v2 =
2gH/(1+k).

On the other hand, the bodies travel dis-
tance x = H/sinα along the slope with a con-

stant acceleration a∥ directed parallel to the
surface. Let’s express a∥ from the equation
v2 = 2a∥x:

a∥ = gsinα/(1+k).

The times are now easy to calculate as t =
v/a∥, giving

t =
p

1+k
(

2H
gsin2α

) 1
2

.

Replacing ks = 2
5 for sphere and kc = 1

2 for
cylinder, we find that the sphere is faster by
a relative factor

γ=
√

1+kc

1+ks
−1=

√
15
14

−1≈ 0.035.

ii) (2.5 points) As found in previous subpart,
the acceleration’s parallel component to the
slope a∥ is smaller than the contribution by
gravity gsinα. The difference is contributed
by the friction force F f = mgsinα−ma∥. Slid-
ing starts, if the necessary friction reaches
the maximal value Fmax = µN = µmgcosα.
Equating the two expressions gives

mgsinα−mgsinα/(1+k)=µmgcosα,

tanα=µ1+k
k

.

For the cylinder the limiting angle is α0 =
arctan(3µ).

iii) (2.5 points) When the maximal friction
force is reached, the motion goes into rolling
and sliding mode, where the total force com-
ponent along the surface is given by the dif-
ference of gravity and friction:

F∥ = mgsinα−Fmax = mgsinα−µmgcosα.

We note that the acceleration in this mode
does not depend on the moment of inertia any
more.

Calculating the limiting angle of slipping
mode also for the sphere αsph = arctan( 7

2µ)>
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α0 shows that for all angles larger than
αm = αsph both bodies are in the slipping
mode and thus have equal accelerations and
arrival times.

7. BURNING WITH A LENS (7 points) The
solar energy flux which is focused by the lens
to the image of the Sun can be calculated
as P = π

4 d2I; the image of the Sun radiates
according to the Stefan-Boltzmann law with
the total power P = π

4 (α f )2σT4. From the
heat balance we obtain π

4 d2I = π
4 (α f )2σT4,

hence

T =

√√√√ d
α f

√
I
σ
≈ 4500K.

Due to the second law of thermodynamics,
it is impossible to direct heat energy from a
lower temperature body to a higher temper-
ature body. Hence, the image temperature
cannot exceed the temperature of the Sun.
Now we can use the known temperature of
Sun T0 = 6000K, but it is better to use the
Stefan-Boltzmann law for solar radiation flux
density: near the Sun’s surface, I0 = σT4

0 ,
with the total flux of Pt = 4πR2

s I0. Near
the Earth, the total flux Pt = 4πL2I; here,
Rs is the Sun’s radius, and L — the orbital
radius of the Earth. From here we obtain
I = I0R2

s /L2 =σT4
0 R2

s /L2; using the previous
result,

T = T0

√
d
α f

Rs

L
.

Let us note that αL = 2Rs, hence

T = T0

√
d

2 f
≤ T0,

which means that d ≤ 2 f .

8. ZENER DIODE (7 points)

i) (1 point) Kirchoff ’s 2nd law gives Lİ +
q/C = 0 or q̈ + 1

LC q = 0. This is the equa-
tion of a simple harmonic oscillator with

the frequency ω = 1p
LC

and we can immedi-
ately write q(t)= q0 cosωt, while I(t)= q̇(t)=
−ωq0 sinωt.

Note that

q2 + 1
ω2 I2 = q2

0(sin2ωt+cos2ωt)= q2
0,

and therefore the phase diagram of the sys-
tem is an ellipse centred at the origin, with
semi-axes q0 and ωq0. Alternatively, this re-
lation comes directly from the conservation
of energy:

LI2

2
+ q2

2C
= E0 =

q2
0

2C
.

By looking at q and I a quarter-period
later from t = 0, say, it’s not hard to see that
the system must evolve in a clockwise sense
on the phase diagram. Note that in this in-
stance, only q = 0 is an equilibrium point:
for all non-zero q there will be never-ending
oscillations in the circuit.

q

I

ii) (2 points) Now the sign of the voltage on
the diode depends on the direction of the cur-
rent, giving either of Lq̈+ q

C ±Vd = 0. We can

summarize the equations as follows:

Lq̈+ q
C

=Vd if q̇ < 0

Lq̈+ q
C

=−Vd if q̇ > 0

Let us introduce the new variables q1,2
such that q1 = q − CVd and q2 = q + CVd .
Then we can rewrite the two equations above
in a more familiar form:

Lq̈1 +
q1

C
= 0 if q̇ < 0

Lq̈2 +
q2

C
= 0 if q̇ > 0

Thus the introduction of the diode only serves
to shift the equilibrium points for the oth-
erwise simple harmonic orbits. For q̇ > 0,
the equilibrium point is q2 = 0 or q =−CVd ,
while for q̇ < 0 it is q = CVd . So the orbit will
consist of half-ellipses in the upper and the
lower parts of the I − q diagram, centred at
q =−CVd for the upper half and at q = CVd
for the lower half. As the evolution is continu-
ous, these half-ellipses will join up at I = 0.

CVd CVd

q

I

−

iii) (2 points) We can see on the diagram
that there is a “dead zone” between ±CVd

(for I = 0). If a trajectory reaches any of
the points in that segment, it will stay there
forever. The extent of that region is 2CVd .

iv) (2 points) Let’s use the phase diagram
to figure this out. Suppose the capacitor
initially has the charge q0 À CVd . Then
the charge will first swing to the other way
of CVd and will become qT/2 = CVd − (q0 −
CVd) = 2CVd − q0. Then it will perform the
other half-oscillation around −CVd and the
charge at the end of that is qT = −CVd +
(−CVd − (2CVd − q0))= q0 −4CVd , and there-
fore ∆q =−4CVd .

Note that we have the right to talk about
half- and full periods because the oscilla-
tions still happen at the immutable frequency
ω = 1p

LC
. Therefore the time between the

two maxima is just a full period of oscillation,
T = 2π

ω
.

Once q(t) has a zero derivative inside the
region bounded by ±CVd , it will remain at
that particular value forever. For a large ini-
tial q0, we expect there to be approximately∣∣∣ q0
∆q

∣∣∣= |q0|
4CVd

total oscillations.

More exactly, the distance from the “dead
zone” is initially |q0|−CVd and decreases dur-
ing each half-oscillation by 2CVd . The total
number of half-oscillations is N =

⌊ |q0|−CVd
2CVd

⌋
and the total time t = N T

2 = N π
ω
= Nπ

p
LC.

9. GLASS CYLINDER (7 points) The axis
of the half-cylinder is where the stripe and
its image coincide (form a straight line). The
front edge of the half-cylinder is at the 28th

line, counting from the axis, hence the radius
of the cylinder R ≈ 28. Let us consider the
refracting ray s which is very close to a total
internal reflection. One can see the images
of 20 lines (ca 20.2, to be more precise), when
counting from the central line upwards; the
upper edge of the half-cylinder coincides with
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the 42nd line at the background.

So, the ray s arrives at the camera at
the angle α = arcsin(28/42) ≈ 41.8◦ with re-
spect to the plane of the paper. The pro-
jection of the refraction point to the paper
surface lies at the distance a = 28sinα =
282/42 ≈ 18.7 lines from the axis. There-
fore, before refraction, ray s forms an angle
β= arcsin[(20.2−18.7)/(28cosα)]≈ 4.1◦ with

the perpendicular of the paper surface. The
incidence angle of the ray s is α+β≈ 45.9◦,
hence n = 1/sin(α+β)≈ 1.39.

10. RESISTIVE HEATING (8 points) After
noting the temperature of the calorimeter,
connect the batteries, resistor (in the calor-
imeter) and ammeter in series. Choose a
convenient time interval ∆t and note the am-
meter reading until batteries are depleted.

Measure the temperature at the end, after
waiting a bit or stirring the calorimeter. We
want to get maximum temperature difference
for precise measurement. Since P = RI2,

Q
R

≈
∑
n
∆t(In/2+ In+1/2)2,

R = (cama + cwmw)∆T∑
n∆t(In/2+ In+1/2)2

.

The resistance used was R = 0.47Ω±5%.
In the described circuit the batteries were
depleted in 10 to 15 minutes and the tem-
perature of the calorimeter rose by 7 to 10
degrees.
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