
1. Rubber fiber (12 pts)

1) Volume conservation: Sl = S0l0, hence S =

S0l0/l.

2) At the limit of small deformations, F (l) = a+
b
l ≈ a− bx/l20 = k0x, hence E0S0/l0 = −b/l20,

hence b = −E0S0l0 (1 pt). Besides, at l = l0,

F = 0 (0.5 pts), hence a + b
l =

0 and a = E0S0

(1 pt).

3) ∆F ≈ dF
dl dl = E0S0

l0δl
l2 .

4) Newton II law: E0S0(1 − l0
l ) = 2K/l, hence

l = l0 + 2K
E0SO

.

5) Conservation of angular momentum: lvt =

LVt, hence vt = Vt
L

L+r (1.5 pts). Conservation

of energy: m
2 (v2

t + v2
r)+E0S0(r− l0 ln r+L

L ) =
m
2 (V 2

t + V 2
r ) (2 pts).

6) Substituting vt from the angular momen-

tum conservation law into the energy equation

we obtain m
2 [V 2

t ( L
L+r )2 + v2

r ] + E0S0(r −
l0 ln r+L

L ) = m
2 (V 2

t + V 2
r ) (0.4 pts). Furt-

her we make use of condition |r| ≪ L and

substitute ( L
L+r )2 ≈ 1 − 2 r

L + 3( r
L )2 (0.4

pts), ln r+L
L ≈ r

L − 1
2 ( r

L )2 (0.4 pts). Line-

ar in r terms cancel out due to the condition

E0S0(1 − l0
L ) = mV 2

t /L (0.4 pts). So, we arrive

at m
2 [3V 2

t ( r
L)2 + v2

r ] + 1
2E0S0l0(

r
L )2 = m

2 V 2
r

(0.4 pts). This is the energy conservation law for

a pendulum consisting of a spring with effective

stiffness keff = (3mV 2
t + E0S0l0)L

−2 and of a

body with effective mass meff = m (0.5 pts). So,

T = 2πL/
√

3V 2
t + E0S0l0m−1 ≈ 2πL/

√
3Vt

(0.3+0.2 pts).

2. Planets (6 pts)

1) First method: determine the tangents to the

graph at the points where the curve crosses the

horizontal axis, a1 ≈ −2.8 and a2 ≈ 16 (in

graph units), respectively. Then, a2 = ω −k
1+k

and a2 = ω k
1−k . The graph units will cancel out

from the ratio of these to tangents, ε = −a2

a1

=
1+k
1−k ≈ 5.7, hence k = 1−ε

1+ε ≈ 1.4.

Second method (more precise): determine

the distances between neighbouring minimum

and maximum, t1 ≈ 1.2, and between neighbou-

ring minima t2 ≈ 4.6 (in graph units), respecti-

vely. µ = t1
t2

= π−2 arcsin k
2π ≈ 0.261, hence

k = sin[(1
2 − µ)π] ≈ 1.47 ≈ 1.5.

2) For the maximal angular displacement ϕm,

sinϕm = k = sin[(1
2 − µ)π], hence ϕm =

(1
2 − µ)π = 0.75 rad ≈ 3.6 units. Therefore, the

unit is ϕm/(1
2 − µ)π ≈ 4.8.

3) If the angular velocities of the planets are ω1

and ω2, the seeming angular velocity (as seen

from the system, where both star and the obser-

ver planet are at rest) is ω = ω1 − ω2. From

the Newton II law, GMr−2
i = ω2

i ri, where

i = 1, 2 and ri is the planet’s orbital radius.

So, ωi =
√

GMr−3
i and ω =

√
GM(r−1.5

2 −
r−1.5
1 ) =

√
GMr−1.5

1 (1 − k−1.5). Finally, the

square of the observed period T 2 = (2π/ω)2 =

4π2r3
1/GM(1− k−1.5)2 and r1 = [T 2GM(1−

k−1.5)2/4π2]1/3. Using T ≈ 4.6 years≈ 1.45 ·
108 s, we arrive at r1 ≈ 2.5 · 1011 m; correspon-

dingly, r2 = kr1 ≈ 3.7 · 1011 m.

3. Tilt-shift lens (6 pts)

From f−1 = x−1 − x′−1 we obtain x = x′f
x′+f .

Since the ray passing through the centre of a lens

without refraction, from similar triangles we ob-

tain the relationship between the y-coordinates

of the image: y = y′ x
x′

= y′f
x′+f . Substituting

into y = ax + b we result in y′f
x′+f = a x′f

x′+f + b,

hence y′ = ax′ + b(x′

f + 1) = x′(a + b
f ) + b,

which defines also a straight line.

1) First we notice that the line, its image, and

lens plane intersect in one point, because the

image of that point of the line which lays at the

lens plane, coincides with itself. Now, it is easy to

construct the image, see the figure.

2) First we notice that the distance of the image

of the far end of the field (let us designate it by A)

from the focal plane equals to the focal length f .

So, the lens plane must touch the circle of radius

f , drawn around A, see figure. Next we notice

that there is one such ray connecting far end of

the field and its image, which does not refract —

the one passing through the enter of the lens, see

figure.

4. Transparent film (6 pts)

The short-wavelength oscillations on the graph

are due to the diffraction on the film, there-

fore the local maximum condition is 2dn =

λN = cN/ν . So, 2dnν = cN and 2dn(ν +

δ)ν = c(N + 1), hence 2dnδν = c and d =

c/2nδν . In order to measure the distance be-

tween two maxima more precisely, we take a

longer frequency interval , e.g. ∆ν = 80 THz

and count the number of maxima between them,

m ≈ 34. Consequently, δν = ∆ν/m ≈
2.35 THz, and d ≈ 50 µm

5. 4th order ellipse (6 pts)

1) There are trivial positions ϕ = 0 and ϕ =

π/2. Besides, there is a position between these

two. At the equilibrium, the vector from the ori-

gin to the touching point ~r = (x, y) has to be

perpendicular to the tangent at that point. In or-

der to find the tangent, let us differentiate the el-

lipse formula: 4x3

a4 dx + 4 y3

b4 dy = 0, hence, with

dx = 1, dy = −x3

y3

b4

a4 , a tangent vector is ~τ =

[1,−(x
y )3( b

a )4]. The vectors are perpendicular,

if the scalar product is zero: x − y(x
y )3( b

a )4 , i.e.
y
x = ( b

a )2 = ϕ = arctan y
x = ( b

a )2 .

2) Around each zero ϕ changes sign. At ϕ = 0,

small increase in ϕ will result in a torque trying

to return to the initial position, i.e. the torque

becomes negative. So, the graph looks like the

one below.

3) If the derivative of the graph at equilibrium

point is negative, the position is stable; otherwi-

se it is unstable. ϕ = 0 and ϕ = π/2 are stable,

ϕ = ( b
a )2 is unstable.



6. Magnets (6 pts)

1) Each permanent magnet can be considered

as a solenoidal molecular current at the surface

of the magnets. Suppose that each magnet has

net surface current I . Consider triangular con-

tour going through the interiors of the magnets

A,B,C . According to the circulation theorem

for that contour, the circulation BAl + BBl +

BCl is proportional to the overall molecular cur-

rent through that contour: BAl + BBl + BCl =

3kI . Here, BA designates magnetic inductance

inside the magnet A; BB and BC are defined

analogously. For a single magnet attached to a

massive U-shaped ferromagnetic, the circulation

theorem yields B0l = kI (where B0 is the mag-

netic inductance inside the magnet; the cont-

ribution to the circulation inside a massive U-

shaped ferromagnetic can be neglected, because

the magnetic field there is much smaller than in-

side the magnet). So, BA + BB + BC = 3B0

and ΦA + ΦB + ΦC = 3Φ.

2) There are no sources of magnetic field lines

(and hence of the flux), so ΦA = ΦB + ΦF .

3) Due to symmetry, ΦF /ΦC = 1.

4) Upon using symmetry, ΦF = ΦC and ΦD =

ΦB . From the circulation theorem for the triang-

le CDE, ΦC + ΦE − ΦB = Φ. From the no-

flux-source condition for the vertex with mag-

nets E,C,B we obtain ΦE = ΦC − ΦB . To-

gether with the equations form questions 1 and

2, ΦA = 3
2Φ, ΦC = ΦF = Φ, ΦB = ΦD =

ΦE = 1
2Φ.

5) The larger the flux, the more difficult to remo-

ve a magnet, because the magnetic flux needs to

go through the air gap which will be formed (en-

larging the magnetic energy), when starting the

removal. So, the answer is “A”.

7. Passive air-cooling (9 pts)

1) Using γ = cp/cV and cp = cV + R we arrive

at cp = γ
γ−1R.

2) From the ideal gas equation, p0 = ρ
µRT (the

process is by constant pressure, otherwise the-

re would be huge acceleration due to pressure

drop).

3) Different air densities inside and outside the

pipe give rise to small residual (as compared to

the static pressure distribution inside the pipe)

pressure difference between the open ends of the

pipe, ∆p = −∆ρgL. This pressure difference is

responsible for the acceleration of the air, from

zero, up to the velocity of the air flow v. The mo-

mentum balance for small time interval τ yields

S∆pτ = ρ(Svτ)v, hence (ρ0 − ρ)gL = ρv2. .

Here, the cold air density ρ0 = p0µ/RT0. Final-

ly, ( p0µ
RT0

− ρ)gL = ρv2.

4) Heat flux: P = γ
γ−1R(T − T0)Svρ/µ.

5) From the result of question 2, we obtain
∆ρ
ρ = −∆T

T . From the result of question

3, ∆ρ
ρ = − v2

gL . Substituting these values in-

to the equation obtained for question 4, P =
γ

γ−1R v3

gLTSρ/µ. Using the gas equation, this

simplifies to v3 = γ
γ−1

gL
S

P
p0

. So, T = T0[1 +

( γ
γ−1

gL
S

P
p0

)2/3/gL] ≈ 322 K.

8. Loop of wire (7 pts)

1) At the distance r from the current I0 , the

magnetic induction B = µ0I0
2πr . Then, the

flux through the contour Φ =
∫ l+a

l Bbdx =
∫ l+a

l
bµ0I0
2πx dx = bµ0I0

2π ln a+l
l .

Alternatively, we can find it using the graph

by determining the area S under the curve, from

r = r1 = 0, 01 m to r = r2 = 0, 04 m:

S ≈ 0, 28 mT·m, further, Φ = Sb = 280 µWb.

2) After switching off the current, the flux th-

rough the tends to zero. From the Ohm’s law

R dq
dt = dΦ

dt , hence Rdq = dΦ, i.e. RQ = ∆Φ =

Φ. Finally, Q = Φ/R = 280 µC.

3) We calculate the force as difference between

the forces at the two loop segments parallel

to the straight line: F1 = biB1 and F2 =

biB2, where i = R−1 dΦ
dt . So, dp = (F1 −

F2)dt = bR−1(B1 − B2)dΦ. Using B1 =

µ0I/2πl and B1 = µ0I/2π(l + a), we end

up with dp = b
R

µ0I
2π

a
l(l+a)dΦ. Using the re-

sult of first question, dΦ = bµ0

2π ln a+l
l dI , i.e.

dp = ( bµ0

2π )2 a
Rl(l+a) ln a+l

l IdI . Finally, p =
a(bµ0I0)2

8π2Rl(l+a) ln a+l
l ≈ 2.08 · 10−6 kg·m/s2 .

The same result could have been obtained

using the graph and approach used in the alter-

native solution of the question 1.

9. Experiment (15 pts)

The idea: take readings of discharge current, as

a function of time. The surface area under the

graph is the outflown charge Q. Taking the rea-

dings of voltage U0 and U1 at the beginning and

at the end of discharge, we obtain Q/C = U0 −
U1, i.e. C = Q/(U0−U1). As for V-I characteris-

tic, interrupt from time to time discharge, take

reading of discharge current I just before inter-

ruption, measure voltage U , and continue disc-

harging. Collect enough data to draw V-I charac-

teristic.


